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Abstract 
Microencapsulated electrophoretic imaging films have been 

developed for various display applications.  These films exhibit an 
“ink-on-paper” appearance owing to their strong, near lambertian 
light scattering properties.  Image persistence exhibited by these 
films allows displays to operate without power outside of image 
updates.  This and their ready incorporation into flexible displays 
make microencapsulated imaging films attractive for portable 
devices where readability in a wide variety of lighting conditions, 
low power consumption, and mechanical robustness are important.  
This report reviews the basic principles of optical and electronic 
performance of E Ink’s microencapsulated electrophoretic films as 
well as some recent applications, and methods of driving these 
films in active-matrix electronic paper displays (EPD). 

 
There is considerable interest in electronic paper displays 

(EPD) for use in portable devices that allow for easy readability 
under a variety of lighting conditions and viewing angles and 
which require little power.  Electrophoretic films are attractive 
candidates for these displays because of their high reflectivity, 
near-lambertian reflection characteristics, and image stability.  
These films incorporate charged particles in a fluid medium 
whereby scattering particles are used to achieve a white state.  
They are driven to the front of the display through coulombic force 
by applying the appropriately signed voltage to the display 
backplane.  Reversing the sign of the backplane voltage drives 
these particles to the back of the display behind a dyed fluid or a 
second, light absorbing set of oppositely-charged particles, thus 
achieving a dark state.  The strong scattering of the particles, along 
with the absence of polarizers utilized in most liquid crystal 
displays, gives a bright, near lambertian white state to the display, 
offering high brightness for all illumination and viewing angles. 

Historically, electrophoretic displays have suffered from 
several primary failure modes associated with lateral migration of 
the pigment.  E Ink has developed a microencapsulated 
electrophoretic imaging film for incorporation into a variety of 
display applications.   Microencapsulation limits lateral migration 
of the pigment particles to block these failure modes and impart a 
solid component between the bottom and top display substrates.  
The film structure is shown schematically in Figure 1.  The 
microcapsules are designed to be deformable so that properly 
controlled coating yields a tightly packed array of microcapsules 
as shown in the microscopic image in Figure 2.  This tight packing 
minimizes the non-active area of the imaging film, and this is 
important for maintaining a high optical contrast. 

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1. Cross sectional schematic of a microencapsulated 
electrophoretic imaging film.  Charged pigment particles in a fluid 
are contained within microcapsules within a solid film between a 
transparent, conductive top plane electrode (top) and a series of 
pixel electrodes.  Backplane voltages drive either the white or 
black pigment particles toward the front to achieve light and dark 
optical states. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 2. Microscopic image of a microencapsulated 
electrophoretic imaging film.  The microcapsules are deformable 
and form a tightly packed array of capsules that impart a high 
active area fraction to the imaging film. 
 

E Ink Imaging Film™ has been designed to exhibit image 
persistence in the absence of a drive voltage, not only for the black 
and white optical states, but also the intermediate graytones.  
White and black states are written to the imaging film using a 
voltage pulse of prescribed duration.  Graytones between white 



 

 

and black are achieved by “partial addressing”, either by applying 
a pulse of lower voltage for the same prescribed duration, or by 
applying a pulse of the same voltage but for a shorter duration.  
Because graytone images written in these films persist in the 
unpowered state, power is used only to update an image, but none 
is required to maintain an image.  This allows for very low power 
consumption in applications where the display is not continuously 
updated, for example, for an electronic book.  In order to take 
advantage of the image persistence and realize low power 
consumption a differential driving scheme must be employed.  In 
differential drive, the display controller applies an appropriate 
voltage sequence to bring each pixel from a current graytone to the 
graytone necessary for the next image. 

A number of grayscale addressing schemes for driving 
microencapsulated electrophoretic imaging films have been 
developed.  In the simplest scheme, the transition from one 
graytone to another is direct, with a single voltage pulse driving 
from the initial graytone to a final graytone in a direct path as 
illustrated by the solid line trace in Figure 3.  We have found that 
errors in the image reflectance are larger for this direct scheme 
than for some other driving schemes, and, in fact, for applications 
requiring high-quality graytone imaging, low-error driving 
schemes are preferred.  Very precise graytones can be achieved in 
a scheme whereby the display is driven multiple times to optical 
extremes before being driven to the final graytone.  Such a scheme 
is illustrated by the dashed trace in Figure 3.  The cost of such 
updates is that they are long and they introduce flashiness to the 
transition. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.  Transition from dark gray to light gray in 2-bit 
grayscale.  Solid line shows a direct transition and the dashed line 
a multi-flash indirect transition. 

 
A generalized method for developing transition schemes that 

achieve graytone precision normally associated with such very 
flashy updates was created, but using transition schemes with 
much lower flashiness.  E Ink’s method involves making small 
modifications to a basic transition scheme structure through an 

optimization scheme.  The optimization scheme minimizes metrics 
that relate to variations of reflectance within each graytone, and in 
this way achieves high graytone precision.  Schematic examples of 
the action of such update schemes are illustrated in Figure 4. 

Testing for graytone precision in an image stable display film 
requires special methods that take into account the image 
persistence of the display.  Among other methods, we utilize a test 
protocol based upon a carefully designed pseudo-random sequence 
of transitions in order to characterize the performance of a 
transition scheme.  The testing sequence is designed to include all 
graytone sequences to a certain history depth.  To clarify, consider 
a 2-bit grayscale scheme.  We denote the four graytones “1”, “2”, 
“3”, and “4”.  A sequence that includes all possible transitions 
from one graytone to another (all i�j transitions, i,j = 1, 2, 3, 4) is 
said to be complete to depth two, a sequence that includes all 
transitions from one graytone to another and yet to another (all 
i�j�k transitions) is called complete to depth three, and so on.  
For example, a depth two complete sequence is: 

 
2�4�1�1�3�2�3�3�4�2�1�4�4�3�1�2�2 
 

because all sequence pairs “i�j” are represented.  To run this 
sequence, the display is sequentially driven to each of the 
graytones in the list.  The reflectance is recorded after each 
transition.  Afterwards, the reflectances are arranged in a prior-
sequence indexed fashion so that all the graytone 1 reflectances are 
in the left quarter of the plot, all graytone 2 reflectances are in the 
second quarter, and so on.  Reflectances from a depth-3 complete 
sequence are shown in Figure 5.  The graytones in the left quarter 
are for graytone 1, and each point represents one of the possible  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4.  Transition from dark gray to light gray in 2-bit 
grayscale.  Solid line shows an indirect transition and the dashed 
line a weakly-indirect transition.
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Figure 5.  Reflectances from pseudo-random sequence test of depth 3, shown in L* reflectance scale for an indirect transition scheme like 
that shown in Figure 4.  Variations within each of the four graytones is very small. 
 
 
 
 
 
sixteen combinations of two states prior to graytone 1.  For a very 
precise transition schemes, variations of the reflectances in each of 
the quarters will be small.  Figure 5 shows that the graytones 
achieved using the test transition scheme gave good results, 
because the maximum range within any one graytone is less than 
one L* reflectance unit. 

There is a trade-off between transition flashiness and graytone 
precision.  For some applications, there is a premium on 
minimizing transition flashiness and a tolerance for lower graytone 
precision.  For others, graytone precision is critical and transition 
flashiness is more tolerated.  Our optimization scheme allows us to 
re-optimize for various applications.  By changing the emphasis 
between low transition flashiness and high graytone precision, we 

can realize a range of optimum transition schemes.  The prior-
sequence-indexed, depth-3 reflectance plot for a lower-flash 
transition scheme is shown in Figure 6.  Note that the reflectance 
variations for a single graytone are greater than for the related 
transition scheme that yielded the results of Figure 5.  This cost 
comes with the benefit of reduced update flashiness.   This work 
shows how transition schemes can be adjusted to meet the needs of 
a variety of applications. 

One such application is an electronic book being developed 
by Sony and shown in Figure 7.  This handheld device uses E 
Ink’s microencapsulated imaging film to give an ink-on-paper 
appearance to the display.  The fact that the display requires power 
only to update the image enables a long battery life.  
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Figure 6.  Reflectances from pseudo-random sequence test of depth 3, shown in L* reflectance scale for a weakly indirect transition 
scheme in the spirit shown in Figure 4. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 7.  An electronic book being developed by Sony uses 
 E Ink’s microencapsulated electrophoretic imaging film. 
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